49 research outputs found

    Among Ectasia Patients with Coexisting Coronary Artery Disease, TIMI Frame Count Correlates with Ectasia Size and Markis Type IV Is the Commonest

    Get PDF
    Background. Coronary artery ectasia (CAE) occurs in 0.3 to 5.3% of patients undergoing coronary angiography. TIMI frame count (TFC) is an index of coronary flow that correlates with flow velocity. In ectasia patients, there is delayed coronary flow with increased TFC. Methods. We evaluated angiograms of 789 patients for presence of CAE, coronary artery disease (CAD), and Markis type of CAE. We measured ectasia size and length and their correlation with TFC in ectatic right coronary arteries (RCA) of patients with CAE and CAD. Results. 30 patients had CAE (3.8%). Of these 16.7% had isolated CAE, while 83.87% had CAE and CAD. Among CAE and CAD patients, the RCA was most involved (70.4%), and Markis type IV CAE was the commonest (64%). In isolated CAE, the RCA, LAD, and LCx were equally involved (33.3%). Patients with CAE and CAD had significantly higher TFC compared to controls, P=0.035. There was a positive correlation of moderate strength, between ectasia size and TFC, r(17) = 0.598, P=0.007. Ectasia length was not significantly correlated with TFC, rho (17) = 0.334, P=0.163. Conclusion. Among patients undergoing angiography, CAE has a prevalence of 3.8% and Markis type IV is the commonest. Larger ectasias are associated with slower coronary flow

    Prevalence and prognosis of molecularly defined familial hypercholesterolemia in patients with acute coronary syndrome

    Get PDF
    BackgroundFamilial hypercholesterolemia (FH) can elevate serum low-density lipoprotein cholesterol (LDL-C) levels, which can promote the progression of acute coronary syndrome (ACS). However, the effect of FH on the prognosis of ACS remains unclear.MethodsIn this prospective cohort study, 223 patients with ACS having LDL-C ≥ 135.3 mg/dL (3.5 mmol/L) were enrolled and screened for FH using a multiple-gene FH panel. The diagnosis of FH was defined according to the ACMG/AMP criteria as carrying pathogenic or likely pathogenic variants. The clinical features of FH and the relationship of FH to the average 16.6-month risk of cardiovascular events (CVEs) were assessed.ResultsThe prevalence of molecularly defined FH in enrolled patients was 26.9%, and coronary artery lesions were more severe in patients with FH than in those without (Gensini score 66.0 vs. 28.0, respectively; P < 0.001). After lipid lowering, patients with FH still had significantly higher LDL-C levels at their last visit (73.5 ± 25.9 mg/dL vs. 84.7 ± 37.1 mg/dL; P = 0.013) compared with those without. FH increased the incidence of CVEs in patients with ACS [hazard ratio (HR): 3.058; 95% confidence interval (CI): 1.585–5.900; log-rank P < 0.001].ConclusionFH is associated with an increased risk of CVEs in ACS and is an independent risk factor for ACS. This study highlights the importance of genetic testing of FH-related gene mutations in patients with ACS

    MicroRNA-208a Silencing Attenuates Doxorubicin Induced Myocyte Apoptosis and Cardiac Dysfunction

    No full text
    Aims. GATA4 depletion is a distinct mechanism by which doxorubicin leads to cardiomyocyte apoptosis, and preservation of GATA4 mitigates doxorubicin induced myocyte apoptosis and cardiac dysfunction. We investigated a novel approach of attenuating doxorubicin induced cardiac toxicity by silencing miR-208a, a heart specific microRNA known to target GATA4. Methods and Results. Eight-week-old female Balb/C mice were randomly assigned to sham, antagomir, and control groups. Antagomir group were pretreated with miR-208a antagomir 4 days before doxorubicin administration. At day 0, control and antagomir groups received 20 mg/kg of doxorubicin, while sham mice received phosphate buffered solution. Echocardiography was done at day 7, after which animals were sacrificed and hearts harvested and assessed for apoptosis and expression of miR-208a, GATA4, and BCL-2. Doxorubicin significantly upregulated miR-208a, downregulated GATA4, and increased myocyte apoptosis, with resulting decrease in cardiac function. In contrast, therapeutic silencing of miR-208a salvaged GATA4 and BCL-2 and decreased apoptosis, with improvement in cardiac function. Conclusion. Doxorubicin upregulates miR-208a and promotes cardiomyocyte apoptosis, while therapeutic silencing of miR-208a attenuates doxorubicin induced myocyte apoptosis with subsequent improvement in cardiac function. These novel results highlight the therapeutic potential of targeting miR-208a to prevent doxorubicin cardiotoxicity

    Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment

    No full text
    Objective. Recent studies suggest that IL-38 is associated with autoimmune diseases. Furthermore, IL-38 is expressed in human atheromatous plaque. However, the plasma levels of IL-38 in patients with ST-segment elevation myocardial infarction (STEMI) have not yet to be investigated. Methods. On admission, at 24 h, at 48 h, and at 7 days, plasma IL-38, C-reactive protein (CRP), cardiac troponin I (cTNI), and N-terminal of the prohormone brain natriuretic peptide (NT-proBNP) levels were measured and IL-38 gene in peripheral blood mononuclear cells (PBMCs) was detected in STEMI patients. Results. The results showed that plasma IL-38 levels and IL-38 gene expression in PBMCs were significantly increased in STEMI patients compared with control group and were time dependent, peaked at 24 h. In addition, plasma IL-38 levels were dramatically reduced in patients with reperfusion treatment compared with control group. Similar results were also demonstrated with CRP, cTNI, and NT-proBNP levels. Furthermore, IL-38 levels were found to be positively correlated with CRP, cTNI, and NT-proBNP and be weakly negatively correlated with left ventricular ejection fraction (LVEF) in STEMI patients. Conclusions. The results indicate that circulating IL-38 is a potentially novel biomarker for patients with STEMI and IL-38 might be a new target for MI study

    The IL-2/Anti-IL-2 Complex Attenuates Cardiac Ischaemia-Reperfusion Injury Through Expansion of Regulatory T Cells

    No full text
    Background/Aims: Regulatory T cells (Tregs) can suppress immunologic damage in myocardial ischaemia/reperfusion injury (MIRI), however, the isolation and ex vivo expansion of these cells for clinical application remains challenging. Here, we investigated whether the IL-2/anti-IL-2 complex (IL-2C), a mediator of Treg expansion, can attenuate MIRI in mice. Methods: Myocardial I/R was surgically induced in male C57BL/6 mice, aged 8-10 weeks, that were randomly assigned to 1) sham group (Sham), 2) Phosphate Buffered Saline (PBS), 3) IL-2-anti-IL-2 Ab complex (IL-2C), or 4) sham group, 5) PBS, 6) IL-2C after MIRI, or 7) IL-2C, 8) IL-2C+anti-CD25 mAbs, or 9) IL-2C; 10) IL-2C+anti-TGF-β1 mAbs, 11) IL-2C+anti-IL-10 mAbs. The following parameters were measured at different time points: infarct area, myocardial apoptosis, splenocytes, the inhibitory function of Tregs, and presence of inflammatory factors. In addition, immunohistochemistry analysis was performed. Results: We observed that Tregs were activated in response to MIRI. IL-2C administered before MIRI induced Treg expansion in both spleen and heart, attenuated Th1 and Th17 cell numbers, improved myocardial function, and attenuated both infiltration of inflammatory cells and apoptosis after MIRI. Furthermore, IL-2C administration reduced expression of inflammatory cytokines in the heart and attenuated proliferation of splenic cells. Depletion of Tregs with anti-CD25 mAb abrogated the beneficial effects of IL-2C. However, IL-2C–mediated myocardial protection was not dependent on either IL-10 or TGF-β. In addition, IL-2C administration after MIRI did not reduce infarct area, but did improve myocardial function slightly and reduced myocardial fibrosis. Conclusion: Our results demonstrate that IL-2C–induced Treg expansion attenuates MIRI and improves myocardial recovery in vivo, suggesting that IL-2C is a promising therapeutic target for myocardial IRI

    MicroRNA-208a Dysregulates Apoptosis Genes Expression and Promotes Cardiomyocyte Apoptosis during Ischemia and Its Silencing Improves Cardiac Function after Myocardial Infarction

    No full text
    Aims. miR-208a is associated with adverse outcomes in several cardiac pathologies known to have increased apoptosis, including myocardial infarction (MI). We investigated if miR-208a has proapoptotic effects on ischemic cardiomyocytes and if its silencing has therapeutic benefits in MI. Methods and Results. The effect of miR-208a on apoptosis during ischemia was studied in cultured neonatal mice myocytes transfected with agomir or antagomir. Differential gene expression was assessed using microarrays. MI was induced in male C57BL/6 mice randomly assigned to antagomir (n=6) or control group (n=7), while sham group (n=7) had sham operation done. Antagomir group received miR208a antagomir, while control and sham group mice received vehicle only. At 7 and 28 days, echocardiography was done and thereafter hearts were harvested for analysis of apoptosis by TUNEL method, fibrosis using Masson’s trichrome, and hypertrophy using hematoxylin and eosin. miR-208a altered apoptosis genes expression and increased apoptosis in ischemic cardiomyocytes. Therapeutic inhibition of miR-208a decreased cardiac fibrosis, hypertrophy, and apoptosis and significantly improved cardiac function 28 days after MI. Conclusion. miR-208a alters apoptosis genes expression and promotes apoptosis in ischemic cardiomyocytes, and its silencing attenuates apoptosis, fibrosis, and hypertrophy after MI, with significant improvement in cardiac function
    corecore